Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Clin Mol Hepatol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600873

RESUMO

Background/Aims: Quick sequential organ failure assessment (qSOFA) has been suggested to identify those who have poor outcomes in patients with suspected infection. We aimed to evaluate the ability of the modified qSOFA (m-qSOFA) to identify high-risk patients in acutely deteriorated patients with chronic liver disease (CLD), especially acute-on-chronic liver failure (ACLF). Methods: We used the data of both Korean Acute-on-Chronic Liver Failure (KACLiF) and Asian Pacific Association for the Study of the Liver ACLF Research Consortium (AARC) cohorts. qSOFA was modified by replacing the Glasgow Coma Scale with hepatic encephalopathy, and m-qSOFA≥2 was considered high. Results: Patients with high m-qSOFA had a significantly lower 1-month transplant-free survival (TFS) in both cohorts and higher organ failure development in KACLiF than patients with low m-qSOFA (Ps<0.05). Subgroup analysis by ACLF showed that patients with high m-qSOFA had lower TFS than patients with low m-qSOFA. m-qSOFA was an independent prognostic factor (hazard ratios (HR)=2.604, 95% confidence interval (CI) 1.353-5.013, P=0.004 in KACLiF and HR=1.904, 95% CI 1.484-2.442, P<0.001 in AARC). The patients with low m-qSOFA at baseline but high m-qSOFA on the 7th day had a significantly lower 1-month TFS than the patients with high m-qSOFA at baseline but low m-qSOFA on the 7th day (52.6% vs. 89.4%, P<0.001 in KACLiF and 26.9% vs. 61.5%, P<0.001 in AARC). Conclusion: Baseline and dynamic changes in m-qSOFA were useful to identify patients with a high risk of organ failure development and short-term mortality among CLD patients with acute deterioration.

3.
Gut Microbes ; 16(1): 2341635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634770

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Microbioma Gastrointestinal , Humanos , Inibidores da Bomba de Prótons , Estudos de Casos e Controles , Bactérias , Antibacterianos , Resistência Microbiana a Medicamentos
5.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515346

RESUMO

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Assuntos
Frutas , Persea , Humanos , Simulação de Acoplamento Molecular , Bioensaio , Ácidos Graxos , Obesidade/tratamento farmacológico
6.
Artigo em Inglês | MEDLINE | ID: mdl-38467925

RESUMO

Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.

8.
Gut Microbes ; 16(1): 2307568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299316

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.


Assuntos
Bifidobacterium bifidum , Fígado Gorduroso , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Humanos , Metabolismo dos Lipídeos , Indóis/farmacologia , Fígado Gorduroso/tratamento farmacológico , Inflamação/tratamento farmacológico
9.
Gut Microbes ; 15(2): 2281014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988132

RESUMO

The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.


Assuntos
Microbioma Gastrointestinal , Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Cirrose Hepática Alcoólica , Células Matadoras Naturais , Etanol
10.
Hepatol Int ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831433

RESUMO

BACKGROUND & AIMS: Few studies have investigated the prognosis of patients with non-severe alcoholic hepatitis (Non-SAH). The study aimed to develop a new prognostic model for patients with especially Non-SAH. METHODS: We extracted 316 hospitalized patients with alcoholic cirrhosis without severe alcoholic hepatitis, defined as Maddrey's discriminant function score lower than 32, from the retrospective Korean Acute-on-Chronic Liver Failure (KACLiF) cohort to develop a new prognostic model (training set), and validated it in 419 patients from the prospective KACLiF cohort (validation set). Prognostic factors for death and liver transplantation were analyzed to construct a prognostic model. RESULTS: Twenty-one and 24 patients died within 6 months in both sets, respectively. In the training set, the highest area under the curve (AUC) of conventional prognostic models was 0.765, 0.732, and 0.684 for 1-, 3-, and 6-month mortality, respectively. Refractory ascites, vasopressor use, and hyponatremia were independently associated with mortality of cirrhotic patients with Non-SAH. The new model consisted of four variables: past deterioration, neutrophil proportion > 70%, Na < 128 mmol/L, and vasopressor use. It showed the highest accuracy for short-term mortality in the training and validation sets (0.803 and 0.786; 0.797 and 0.776; and 0.789 and 0.721 for 1-, 3-, and 6-month mortality, respectively). CONCLUSION: There is a group of patients with high risk among those classified as Non-SAH. The new model will help stratifying cirrhotic patients with Non-SAH more accurately in terms of prognosis. The patients with high Non-SAH score need to monitor closely and might be considered for preemptive liver transplantation. TRIAL REGESTRATION: ClinicalTrials.gov identifier: NCT02650011.

11.
Microbiol Spectr ; 11(6): e0534922, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819146

RESUMO

IMPORTANCE: The human gut microbiome mediates bidirectional interaction within the gut-liver axis, while liver diseases, including liver cirrhosis, are very closely related to the state of the gut environment. Thus, improving the health of the gut-liver axis by targeting the intestinal microbiota is a potential therapeutic approach in hepatic diseases. This study examines changes in metabolomics and microbiome composition by treating bacteria derived from the human gut in mice with liver cirrhosis. Interorgan-based multiomics profiling coupled with functional examination demonstrated that the treatment of Bacteroides dorei pertained to protective effects on liver cirrhosis by normalizing the functional, metabolic, and metagenomic environment through the gut-liver axis. The study provides the potential value of a multiomics-based and interorgan-targeted evaluation platform for the comprehensive examination and mechanistic understanding of a wide range of biologics, including gut microbes. Furthermore, the current finding also suggests in-depth future research focusing on the discovery and validation of next-generation probiotics and products (postbiotics).


Assuntos
Hepatopatias , Multiômica , Masculino , Humanos , Animais , Camundongos , Cirrose Hepática/terapia , Fígado/metabolismo , Bacteroides/genética
13.
Front Microbiol ; 14: 1174968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333632

RESUMO

Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.

14.
Artif Cells Nanomed Biotechnol ; 51(1): 217-232, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37129458

RESUMO

We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Flavonoides/farmacologia
15.
Korean J Intern Med ; 38(3): 362-371, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37038262

RESUMO

BACKGROUND/AIMS: Although anti-hepatitis C virus (HCV) assay is widely used to screen for HCV infection, it has a high false-positive (FP) rate in low-risk populations. We investigated the accuracy of anti-HCV signal-to-cutoff (S/CO) ratio to distinguish true-positive (TP) from FP HCV infection. METHODS: We retrospectively analyzed 77,571 patients with anti-HCV results. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of anti-HCV S/CO ratio in anti-HCV positive patients. RESULTS: Overall, 1,126 patients tested anti-HCV positive; 34.7% of patients were FP based on HCV RNA and/or recombinant immunoblot assay (RIBA) results. The age and sex-adjusted anti-HCV prevalence was 1.22%. We identified significant differences in serum aspartate transaminase and alanine transaminase levels, anti-HCV S/CO ratio, and RIBA results between groups (viremia vs. non-viremia, TP vs. FP). Using ROC curves, the optimal cutoff values of anti-HCV S/CO ratio for HCV viremia and TP were 8 and 5, respectively. The area under the ROC curve, sensitivity, specificity, positive and negative predictive values were 0.970 (95% CI, 0.959-0.982, p < 0.001), 99.7%, 87.5%, 87.4%, and 99.7%, respectively, for predicting HCV viremia at an anti-HCV S/CO ratio of 8 and 0.987 (95% CI, 0.980-0.994, p < 0.001), 95.3%, 94.7%, 97.1%, and 91.4%, respectively, for TP HCV infection at an anti-HCV S/CO ratio of 5. No patients with HCV viremia had an anti-HCV S/CO ratio below 5. CONCLUSION: The anti-HCV S/CO ratio is highly accurate for discriminating TP from FP HCV infection and should be considered when diagnosing HCV infections.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepatite C Crônica/diagnóstico , Estudos Retrospectivos , Hepacivirus/genética , Anticorpos Anti-Hepatite C , RNA Viral , Viremia/diagnóstico
16.
Life Sci ; 322: 121626, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003543

RESUMO

AIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming more common and severe. Individuals with NAFLD have an altered composition of gut- microbial metabolites. We used metabolomics profiling to identify microbial metabolites that could indicate gut-liver metabolic severity. Noninvasive biomarkers are required for NAFLD, especially for patients at high risk of disease progression. MAIN METHODS: We compared the stool metabolomes, untargeted metabolomics, and clinical data of 80 patients. Patients with nonalcoholic fatty liver (NAFL: n = 16), nonalcoholic steatohepatitis (NASH: n = 26), and cirrhosis (n = 19) and healthy control individuals (HC: n = 19) were enrolled. The identified metabolites in NAFLD were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS) were used to analyze metabolites. KEY FINDINGS: Untargeted metabolomics was used to identify and quantify 103 metabolites. Principal component analysis (PCA) was used to assess the metabolic discrimination of NAFL, NASH, and cirrhosis. Short-chain fatty acids (SCFA) levels were significantly lower in NAFLD patients, including those of acetate (p = 0.03), butyrate (p = 0.0008), and propionate. The stool cholic acid (p = 0.001) level was significantly increased in NAFLD patients. Palmitoylcarnitine and l-carnitine levels were significantly increased in NASH and cirrhosis patients. The phenotypic expression of these metabolites was linked to ß-oxidation. SIGNIFICANCE: We demonstrated a distinct metabolome profile in NAFLD patients with NAFL, NASH, and cirrhosis. We also discovered that the expression of certain metabolites and metabolic pathways was linked to NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolômica/métodos , Fenótipo , Biomarcadores/metabolismo , Cirrose Hepática
17.
J Transl Med ; 21(1): 263, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069607

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS: We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS: The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION: In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Avena , Simulação de Acoplamento Molecular , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular
19.
Hepatol Int ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000389

RESUMO

BACKGROUND AND AIM: The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS: This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS: The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS: This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL: Clinicaltrials.gov, number NCT04339725.

20.
Front Microbiol ; 14: 1129904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937300

RESUMO

Emerging evidences about gut-microbial modulation have been accumulated in the treatment of nonalcoholic fatty liver disease (NAFLD). We evaluated the effect of Bifidobacterium breve and Bifidobacterium longum on the NAFLD pathology and explore the molecular mechanisms based on multi-omics approaches. Human stool analysis [healthy subjects (n = 25) and NAFLD patients (n = 32)] was performed to select NAFLD-associated microbiota. Six-week-old male C57BL/6 J mice were fed a normal chow diet (NC), Western diet (WD), and WD with B. breve (BB) or B. longum (BL; 109 CFU/g) for 8 weeks. Liver/body weight ratio, histopathology, serum/tool analysis, 16S rRNA-sequencing, and metabolites were examined and compared. The BB and BL groups showed improved liver histology and function based on liver/body ratios (WD 7.07 ± 0.75, BB 5.27 ± 0.47, and BL 4.86 ± 0.57) and NAFLD activity scores (WD 5.00 ± 0.10, BB 1.89 ± 1.45, and BL 1.90 ± 0.99; p < 0.05). Strain treatment showed ameliorative effects on gut barrier function. Metagenomic analysis showed treatment-specific changes in taxonomic composition. The community was mainly characterized by the significantly higher composition of the Bacteroidetes phylum among the NC and probiotic-feeding groups. Similarly, the gut metabolome was modulated by probiotics treatment. In particular, short-chain fatty acids and tryptophan metabolites were reverted to normal levels by probiotics, whereas bile acids were partially normalized to those of the NC group. The analysis of gene expression related to lipid and glucose metabolism as well as the immune response indicated the coordinative regulation of ß-oxidation, lipogenesis, and systemic inflammation by probiotic treatment. BB and BL attenuate NAFLD by improving microbiome-associated factors of the gut-liver axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...